Water relations of seedlings of three Quercus species: variations across and within species grown in contrasting light and water regimes.

نویسندگان

  • Pilar Castro-Díez
  • Javier Navarro
چکیده

We compared seedling water relations of three Mediterranean Quercus species (the evergreen shrub Q. coccifera L., the evergreen tree Q. ilex L. subsp. ballota (Desf.) Samp. and the deciduous or marcescent tree Q. faginea L.). We also explored seedling potential for acclimation to contrasting growing conditions. In March, 1-year-old seedlings of the three species were planted in pots and grown outdoors in a factorial combination of two irrigation regimes (daily (HW) and alternate day watering (LW)) and two irradiances (43 and 100% of full sunlight). At the end of July, predawn and midday water potentials (Psi(pd), Psi(md)) were measured, and pressure-volume (P-V) curves were obtained for mature current-year shoots. Species exhibited similar Psi(pd) and Psi(md) values, but differed in leaf morphology and water relations. The evergreens possessed larger leaf mass per area (LMA) and were able to maintain positive turgor pressure at lower water potentials than the deciduous species because of their lower osmotic potential at full turgor. However, the three species had similar relative water contents at the turgor loss point because Q. faginea compensated for its higher osmotic potential with greater cell wall elasticity. Values of Psi(pd) had a mean of -1.12 MPa in LW and -0.63 MPa in HW, and Psi(md) had a mean of -1.13 MPa in full sunlight and -1.64 MPa in shade, where seedlings exhibited lower LMA. However, the P-V curve traits were unaffected by the treatments. Our results suggest that Q. faginea seedlings combine the water-use characteristics of mesic deciduous oak and the drought-tolerance of xeric evergreen oak. The ability of Q. coccifera to colonize drier sites than Q. ilex was not a result of higher drought tolerance, but rather may be associated with other dehydration postponement mechanisms including drought-induced leaf shedding. The lack of treatment effects may reflect a relatively low contrast between treatment regimes, or a low inherent responsiveness of these traits in the study species, or both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leaf Traits and Photosynthetic Light Response of Quercus Suber L. Seedlings Grown in a Combination of Light and Water Regimes

The aim of this study is to investigate the effects of two important factors: light and water availability on the leaf characteristics and the growth of plants. Seedlings of Quercus suber were grown under controlled conditions (greenhouse) with three light treatments (100, 27 and 3 % of incident light, open, shade and deep shade; respectively) and with daily irrigation. Since middle spring, one...

متن کامل

Physiological and biochemical responses of Quercus brantii seedlings to water deficit stress

Water shortage is one of the most important environmental stresses in Mediterranean regions. Poor seedling quality may account for the failure of oak regeneration. To determine the best seed origin of Quercus brantii, we investigated on seedlings collected from 20 mother trees in the Zagros Mountain forests 700 to 2200 m altitudes above sea level. Seedlings from different altitudes were irrig...

متن کامل

Interactions of drought and shade effects on seedlings of four Quercus species: physiological and structural leaf responses.

Here, we investigated the physiological and structural leaf responses of seedlings of two evergreen and two deciduous Quercus species, grown in a glasshouse and subjected to contrasted conditions of light (low, medium and high irradiance) and water (continuous watering vs 2-months drought). The impact of drought on photosynthetic rate was strongest in high irradiance, while the impact of shade ...

متن کامل

Climatic origins predict variation in photoprotective leaf pigments in response to drought and low temperatures in live oaks (Quercus series Virentes).

Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Tree physiology

دوره 27 7  شماره 

صفحات  -

تاریخ انتشار 2007